28 research outputs found

    Proposal for an IMLS Collection Registry and Metadata Repository

    Get PDF
    The University of Illinois at Urbana-Champaign proposes to design, implement, and research a collection-level registry and item-level metadata repository service that will aggregate information about digital collections and items of digital content created using funds from Institute of Museum and Library Services (IMLS) National Leadership Grants. This work will be a collaboration by the University Library and the Graduate School of Library and Information Science. All extant digital collections initiated or augmented under IMLS aegis from 1998 through September 30, 2005 will be included in the proposed collection registry. Item-level metadata will be harvested from collections making such content available using the Open Archives Initiative Protocol for Metadata Harvesting (OAI PMH). As part of this work, project personnel, in cooperation with IMLS staff and grantees, will define and document appropriate metadata schemas, help create and maintain collection-level metadata records, assist in implementing OAI compliant metadata provider services for dissemination of item-level metadata records, and research potential benefits and issues associated with these activities. The immediate outcomes of this work will be the practical demonstration of technologies that have the potential to enhance the visibility of IMLS funded online exhibits and digital library collections and improve discoverability of items contained in these resources. Experience gained and research conducted during this project will make clearer both the costs and the potential benefits associated with such services. Metadata provider and harvesting service implementations will be appropriately instrumented (e.g., customized anonymous transaction logs, online questionnaires for targeted user groups, performance monitors). At the conclusion of this project we will submit a final report that discusses tasks performed and lessons learned, presents business plans for sustaining registry and repository services, enumerates and summarizes potential benefits of these services, and makes recommendations regarding future implementations of these and related intermediary and end user interoperability services by IMLS projects.unpublishednot peer reviewe

    Consensus coding sequence (CCDS) database: a standardized set of human and mouse protein-coding regions supported by expert curation.

    Get PDF
    The Consensus Coding Sequence (CCDS) project provides a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assembly in genome annotations produced independently by NCBI and the Ensembl group at EMBL-EBI. This dataset is the product of an international collaboration that includes NCBI, Ensembl, HUGO Gene Nomenclature Committee, Mouse Genome Informatics and University of California, Santa Cruz. Identically annotated coding regions, which are generated using an automated pipeline and pass multiple quality assurance checks, are assigned a stable and tracked identifier (CCDS ID). Additionally, coordinated manual review by expert curators from the CCDS collaboration helps in maintaining the integrity and high quality of the dataset. The CCDS data are available through an interactive web page (https://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi) and an FTP site (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/). In this paper, we outline the ongoing work, growth and stability of the CCDS dataset and provide updates on new collaboration members and new features added to the CCDS user interface. We also present expert curation scenarios, with specific examples highlighting the importance of an accurate reference genome assembly and the crucial role played by input from the research community. Nucleic Acids Res 2018 Jan 4; 46(D1):D221-D228

    A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data

    Proteins of the Fibrinolytic System in Human Thrombi

    No full text
    corecore